Gimlet Rule - vienkāršota vizuālā demonstrācija, izmantojot vienu roku, lai pareizi reizinātu divus vektorus. Skolas kursa ģeometrija nozīmē skolēnu izpratni par skalāra produktu. Fizikā bieži tiek atrasts vektors.
Vector
koncepcija Mēs uzskatām, ka nav jēgas interpretēt urbjmašīna noteikumus, ja nav zināšanu par vektora definīciju. Nepieciešams atvērt pudeli - palīdzēs iegūt pareizās darbības. Vektors ir matemātiska abstrakcija, kas patiesībā nepastāv, parādot šīs pazīmes:
- virziena segments, ko norāda ar bultiņu.
- Sākumpunkts ir vektora aprakstītā spēka darbības punkts.
- Vektora garums ir vienāds ar spēka moduli, lauku, pārējiem aprakstītajiem daudzumiem.
Ne vienmēr ietekmē spēku. Vektori apraksta lauku. Vienkāršāko piemēru skolēniem parāda fizikas skolotāji. Mums ir magnētiskā lauka intensitātes līnijas. Vektori parasti tiek novilkti gar tangenci. Darbības ilustrācijās ar vadītāju ar strāvu redzēsiet taisnas līnijas.
vektoru vērtības bieži vien nepiemīt lietojuma telpai, darbības centri tiek izvēlēti pēc vienošanās. Spēka moments rodas no pleca ass. Nepieciešams, lai vienkāršotu pievienošanu. Pieņemsim, ka dažādu garumu sviras ietekmē dažādi spēki, kas uz pleciem tiek pielietoti ar kopējo asi. Vienkārši pievienojot, atņemot momentus, mēs atrodam rezultātu.
vektori palīdz atrisināt daudzus ikdienas uzdevumus, un, lai gan tie darbojas kā matemātiskas abstrakcijas, viņi patiešām strādā.Pamatojoties uz vairākām likumsakarībām, ir iespējams prognozēt objekta turpmāko uzvedību kopā ar skalāra vērtībām: iedzīvotāju populāciju, apkārtējās vides temperatūru. Vides speciālisti ir ieinteresēti virzienos, putnu lidojuma ātrumā.Pārvietošanās ir vektora daudzums.
Gimlet noteikums palīdz atrast vektoru produktu vektoriem. Tā nav tautoloģija. Tikai darbības rezultāts būs arī vektors. Gumijas vingrinājuma noteikums raksturo virzienu, uz kuru vērsties bultiņa. Attiecībā uz moduli, jums ir jāpiemēro formula. Gumijas vingrinājuma noteikums ir vienkāršota, tikai kvalitatīva kompleksa matemātiskas operācijas iegūšana.
Analītiskā ģeometrija telpā
Ikviens zina problēmu: stāvot vienā upes pusē, nosaka kanāla platumu. Tas, protams, šķiet nesaprotami, risināms divos kontos ar vienkāršākās ģeometrijas metodēm, kuras studenti mācās. Darīsim vairākas vienkāršas darbības:
- Atklājiet ievērojamu orientieri pretējā krastā, iedomātu punktu: koku stumbru, plūsmu ieplūstošās straumes muti.
- Pretējā krasta līnijas taisnajā leņķī šajā kanāla pusē veiciet iecirtumu.
- Atrodiet vietu, no kuras orientieris ir redzams 45 grādu leņķī pret krastu.
- Upes platums ir vienāds ar beigu punkta attālumu no griezuma vietas.
Mēs izmantojam leņķa pieskari. Ne vienmēr ir 45 grādi. Nepieciešama lielāka precizitāte - leņķis ir labāks, lai ņemtu asu. Tikai 45 grādu tangens ir viens, problēmas risinājums ir vienkāršots.
Tāpat ir iespējams atrast atbildes uz dedzinošiem jautājumiem. Pat elektronu kontrolētā mikrokosmā.Mēs noteikti varam teikt vienu lietu: nepieredzētam vingrinājuma noteikumam vektoru produkts, šķiet, ir garlaicīgi, garlaicīgi.Ērts rīks, kas palīdz izprast daudzus procesus. Lielākā daļa ieinteresēs elektromotora darbības principu( neatkarīgi no konstrukcijas).Var viegli izskaidrot, izmantojot kreisās puses noteikumu.
Daudzās zinātnes nozarēs blakus ir divi noteikumi: pa kreisi, labā roka. Vector produktu dažreiz var aprakstīt vienā vai otrā veidā.Izklausās neskaidri, mēs iesakām nekavējoties apsvērt piemēru:
- Pieņemsim, ka elektrons kustas. Negatīvi lādēts daļiņu arkli ar nemainīgu magnētisko lauku. Acīmredzot trajektorija būs saliekta Lorentz spēka dēļ.skeptiķi apgalvos, saskaņā ar dažu zinātnieku teikto, elektrons nav daļiņa, bet gan lauku superpozīcija. Bet nenoteiktības princips Heisenbergs apsver citu laiku. Tātad, elektronu pārceļas:
Ievietojot labo roku tā, lai magnētiskā lauka vektors perpendikulāri nonāktu plaukstā, pagarinātie pirksti norāda uz daļiņu lidojuma virzienu, kas ir izliekts 90 grādu leņķī pret pusi, īkšķis stiepjas spēka virzienā.Labās puses noteikums ir vēl viens vārpstas noteikuma izpausme. Sinonīmi. Tas izklausās atšķirīgi, patiesībā - viens.
- Mēs sniedzam frāzi Wikipedia, sniedzot dīvainību. Atspoguļojot spogulī, labās trīs no vektoriem paliek kreisajā pusē, tad labās puses vietā jāpiemēro kreisās puses noteikums. Elektrons lidoja vienā virzienā, atbilstoši fizikā pieņemtajām metodēm, strāva virzās pretējā virzienā.Kā tad, ja tas tiktu atspoguļots spogulī, Lorentz spēku jau nosaka kreisās puses noteikums:
Ja jūs novietojat kreiso roku tā, lai magnētiskā lauka vektors perpendikulāri nonāktu plaukstā, pagarinātie pirksti norāda strāvas plūsmas virzienu, izliekts 90 grādu leņķī, stiepjas, norādot darbības vektoruizturība
redzat, situācijas ir līdzīgas, noteikumi ir vienkārši. Kā atcerēties, kuru no tām piemērot? Fizikas nenoteiktības galvenais princips. Vektoru produkts tiek aprēķināts daudzos gadījumos, piemērojot vienu noteikumu.
Kas ir noteikums, kas jāpiemēro
Vārdi ir sinonīmi: roku, skrūvi, atveri
Vispirms mēs analizējam vārdu - sinonīmus, daudzi sāka uzdot sev jautājumus: ja stāsts šeit ietekmēs vingrojumu, kāpēc teksts nepārtraukti pieskaras rokām. Mēs ieviešam pareizās trīs, pareizās koordinātu sistēmas, koncepciju. Kopā 5 vārdi - sinonīmi.
Bija nepieciešams uzzināt vektoru vektora produktu, izrādījās: tas nedarbojas skolā.Precizējiet situāciju zinātkāri skolēniem.
Skolas grafikas uz tāfeles tiek novilktas Dekarta koordinātu sistēmā X-Y.Horizontālā ass( pozitīvā daļa) ir vērsta uz labo pusi - mēs ceram, ka vertikālā ass norāda uz augšu. Mēs veicam vienu soli, iegūstot pareizos trīs. Iedomājieties: no skaitīšanas sākuma Z ass skatās uz klasi, un tagad skolēni zina pareizo trīs vektoru definīciju.
Vikipēdijā ir rakstīts: ir atļauts paņemt kreisos trīskāršus, labi, aprēķinot vektora produktu, viņi nepiekrīt. Usmanovs šajā ziņā ir kategorisks. Ar Aleksandra Evgenjeviča atļauju mēs sniedzam precīzu definīciju: vektora produkts ir vektors, kas atbilst trim nosacījumiem:
- Produkta modulis ir vienāds ar oriģinālo vektoru moduļu produkciju un leņķa starp tām.
- Rezultātu vektors ir perpendikulārs oriģinālam( kopā tie veido plakni).
- Trīskāršie vektori( konteksta secībā) pa labi.
Trīs labi zina. Tātad, ja X ass ir pirmais vektors, Y ir otrais, rezultāts būs Z.Kāpēc tika saukti par pareizajiem trim? Acīmredzot, tas ir savienots ar skrūvēm, vāciņiem. Ja iztēles vingrinājums ir pagriezts gar visīsāko ceļu, pirmais vektors ir otrais vektors, griešanas rīka translācijas ass sāks kustēties iegūtā vektora virzienā:
- Gumijas vāciņa noteikums attiecas uz divu vektoru produktu.
- Driller noteikums kvalitatīvi norāda šīs darbības rezultāta vektora virzienu. Kvantitatīvi garums ir minētais izteiksme( vektoru moduļu produkts un leņķa starpsavienojums).
Tagad visi saprot: Lorentz spēks tiek atrasts saskaņā ar kreisās puses pavediena likumu. Vektorus vāc pa kreisi trīskāršā, ja tie ir savstarpēji ortogonāli( perpendikulāri viens otram), veidojas kreisās koordinātu sistēma. Uz klāja Z-ass izskatīsies skatījuma virzienā( no auditorijas aiz sienas).
Vienkāršās metodes vingrošanas noteikumu iegaumēšanai
Cilvēki aizmirst, ka Lorentz spēku ir vieglāk noteikt ar vingrinājuma noteikumiem ar kreiso vītni. Vienam, kurš vēlas saprast elektromotora darbības principu, vajadzētu dubultklikšķināt uz tādiem riekstiem. Atkarībā no konstrukcijas rotora spoļu skaits ir ievērojams vai ķēde deģenerējas, kļūstot par vāveres būru. Zināšanu meklētājiem palīdz Lorentz noteikums, kas apraksta magnētisko lauku, kur pārvietojas vara vadi.
Lai iegaumētu, iepazīstināsim ar procesa fiziku. Pieņemsim, ka elektrons pārvietojas laukā.Lai atrastu spēka virzienu, tiek piemērots labās rokas noteikums. Ir pierādīts, ka daļiņai ir negatīva lādiņa. Spēka virziens uz diriģentu ir kreisās puses noteikums, atcerieties: fiziķi pilnīgi no kreisajiem resursiem ņēma, ka elektriskā strāva plūst pretējā virzienā, kur aizgāja elektroni. Un tas ir nepareizi. Tāpēc ir nepieciešams piemērot kreiso roku.
Ne vienmēr dodieties tik tālu.Šķiet, ka noteikumi ir mulsinoši, ne gluži vienkārši. Labās puses noteikumu bieži izmanto, lai aprēķinātu leņķisko ātrumu, kas ir paātrinājuma rādiusa ģeometriskais produkts: V = ω x r. Daudzus cilvēkus palīdzēs vizuālā atmiņa:
- Cirkulārā ceļa rādiusa vektors tiek virzīts no centra uz apli.
- Ja paātrinājuma vektors ir virzīts uz augšu, ķermenis pārvietojas pretēji pulksteņrādītāja virzienam.
Paskatieties, labās puses likums atkal ir šeit: ja novietojat plaukstu tā, lai paātrinājuma vektora iekļūšana perpendikulāri plaukstā, paplašiniet pirkstus rādiusa virzienā, izliekta par 90 grādiem, īkšķis norāda objekta kustības virzienu. Pietiek vienreiz uz papīra, atceroties vismaz pusi dzīves. Attēls ir ļoti vienkāršs. Vairāk par fizikas nodarbību nebūs jācīnās ar vienkāršu jautājumu - leņķiskā paātrinājuma vektora virzienu.
Tāpat tiek noteikts spēka moments. Tas ir perpendikulāri no pleca ass, sakrīt ar virzienu ar leņķisko paātrinājumu iepriekš aprakstītajā attēlā.Daudzi jautās: kas ir nepieciešams? Kāpēc spēka brīdis nav skalārs? Kāpēc virziens? Sarežģītās sistēmās nav viegli izsekot mijiedarbību. Ja ir daudz asu, spēku, vektoru pievienošana brīžiem palīdz. Jūs varat ievērojami vienkāršot aprēķinus.